
Risk management in a stock tracker

INTERNATIONAL JOURNAL OF NATURAL AND APPLIED SCIENCES (IJNAS), VOL. 3, NOS.1& 2 (2008); P. 89 – 97, 8 FIGS.

The use of formal specifications in risk management as modeled in a stock tracker

I. E. Eteng*
1
, B. E. Mbipom

1
, I. I. Arikpo

1

INTRODUCTION

 When planning software projects, it is often assumed that everything

will go exactly as planned. Or, the other extreme position is taken: the

creative nature of software development means one can never

accurately predict what is going to happen, so what is the point of

making detailed plans? These two positions can lead to software

surprises, when unexpected things happen that throw the project off

track (Wiegers, 2003).

 Risk management is becoming recognized as the best practice in the

software industry for reducing these surprises. While it may not be

possible to predict the future with certainty, structured risk

management practices can be applied to quickly look over the future

at the traps that might be looming, and take actions to minimize the

likelihood or impact of these potential problems. Risk management

means dealing with a concern before it becomes a crisis.

 A formal risk management process provides a number of benefits to

a software project team. It gives a structured mechanism to provide

visibility into threats to project success. By considering the potential

impact of each risk item, one can focus on controlling the most severe

risks first. Risk assessment can be combined with project estimation

to measure possible loss of time if certain risks materialize into

problems. Without a formal approach, risk management actions may

not be initiated in a timely fashion, completed as planned, and

effective as desired. The net result of these activities is to help avoid

preventable surprises late in the project, and therefore improve the

chances of keeping to schedules. It also helps to avoid repeating the

mistakes of the past.

Risks in software development can be managed in various ways. One

of such ways is through the use of formal methods, which are a fault

avoidance technique that help in the reduction of errors introduced

into a system, particularly at the earlier stages of design. They

complement fault removal techniques such as testing and validation.

 Managing risks greatly improves the likelihood of successful project

completion, and reduces the potential negative consequences of those

risks that cannot be avoided.

The basis of formal methods is formed by the notation of sets and

constructive specification such as set operators, logic operators, and

sequences. In formal methods, the data invariant, states and operations

for a system function are defined by translating informal requirements

for the problem into a more formal representation.

 When formal methods are applied, a specification represented in a

formal language such as object constraint language (OCL) is

produced. The use of formal methods is quite good because logic

proofs can be applied to each system function to show that the

specification is correct since it uses discrete mathematics as the

specification mechanism. On the other hand, even if logic proofs are

not used, the structure of a formal specification will lead to improved

software quality.

 The failure of some systems (like safety-critical ones) could cost a

lot. Lives may be lost or severe economic consequences can arise

because of the failure of computer software. In such cases, it is

necessary to uncover errors before software is put into operation.

Formal methods greatly reduce specification errors and thus serve as

the basis for software which has very few errors as soon as it is in use.

ABSTRACT

In the course of software development, people either assume that everything will go as planned or due to the nature of software development,
they make sketchy plans. These two views can lead to situations which threaten the development of software projects.
Risk management is being accepted as the best practice for risk reduction and it can be used to minimize the impact of these potential problems
(risks). One of the ways by which these risks in software development can be managed is through the use of formal methods. Formal methods
provide more precision in thinking and documenting the early stages of the software creation process thus helping to reduce specification
errors. In this papar, a stock tracker which helps users to keep track of their investment is modeled. Formal methods were applied to some
aspects of the tracker which reduced risk during the modeling phase and the Java programming language was used to develop some part of the

stock tracking software. The developed program provides facilities for users to check the return on their investment. The ability for the Stock
Tracker to compute the return on investment for a user shows that it is quite an effective tool which users can apply not only to keep track of
investments, but also to prevent losses that could ruin their investment.

*
Corresponding author

Manuscript received by the Editor May 3, 2007; revised manuscript accepted July 24, 2007.
1
Department of Mathematics/Statistics & Computer Science, University of Calabar, Calabar, Nigeria

© 2008 International Journal of Natural and Applied Sciences (IJNAS). All rights reserved.

89

Eteng et al.

Objectives of the research

 The objectives of this papar include:

(i) to provide formal specifications for the discovery of bugs and

misunderstandings at the early stages in the lifecycle;

(ii) to translate informal requirements for the problem into a more

formal representation;

(iii) to make use of discrete mathematics as the specification principle;

(iv) to model a stock tracker whose specifications are formalized;

(v) to show risk reduction using the stock tracking software, and

(vi) to aid users to keep track of their investment and also prevent

losses.

Research justification

 As software projects are planned and executed, future problems that

could cause some loss or threaten the success of such projects could

occur. There is therefore a need to apply some risk management

techniques during software development. One of such techniques is

formal methods.

A stock tracker which aids users to keep track of their investment was

designed in this research. Some aspects of its specifications were

formalized and it was used to illustrate the reduction of risks which

could have resulted in problems during its implementation.

The unique ability of this stock tracker is that of computing the return

of investment for any user when the current price of such an

investment is supplied. This shows that the tracker is quite an

effective tool which users can apply not only to keep track of

investment, but also to prevent losses that could ruin their investment.

BASIC CONCEPTS

 The concept of formalism in formal methods is borrowed from

certain trends in 19th and 20th century mathematics. The development

of consistent non-Euclidean geometries, in which supposedly parallel

lines may intersect, led mathematicians to question their methods of

proof and to search for more rigorous foundations. Eventually, these

foundations came to be seen as describing numbers, sets, and logic.

By the turn of the century, a foundation seemed to be in place, a

mechanical method of manipulating symbols was thus invented to

investigate these questions. Due to some fundamental discoveries, the

results of using this method were ambiguous. However, the axiomatic

method became widely used in advanced mathematics (Kline 1980).

Formal methods are merely an adoption of the axiomatic method, as

developed by these trends in mathematics, for software engineering.

Even if we knew how to fit formal methods with current development

techniques, there is still the problem that much software is currently

produced by „chaotic‟ processes (Humphrey et al., 1989)

 Risks

 The Microsoft operations framework (MOF) broadly defines risk as

any event or condition that can have an impact on the outcome of an

activity. It further states that within the context of information

technology (IT) operations, risks are the probability, not the certainty,

of suffering a loss, and the vulnerability or likelihood that the threat

will occur. The loss could be anything from diminished quality of a

service to increased cost, missed deadlines, or complete service

failure. It also states that risks arise from uncertainty surrounding

operational decisions and outcomes. Most individuals associate the

concept of risk with the potential for loss in value, control,

functionality, quality, or timeliness of completion of an activity.

However, outcomes may also result in failure to maximize gain in an

opportunity; the uncertainties in decision making leading up to this

outcome can also be said to involve elements of risk.

 Risk management for software projects is aimed at minimizing the

chances of unexpected events, and particularly to keep all possible

outcomes under firm management control. Risk management is also

concerned with making judgments about how risk events are to be

treated, valued, compared and combined. Pressman states that risk

management is a discipline for living with the possibility that future

events may cause adverse effects. Risk management can be used to

continuously assess what the risks in a project are and determine

which of these risks are most important, and implement strategies to

deal with these risks.

 The use of mathematics in the development of software systems is

very effective because it can be applied to exactly describe a physical

situation, an object, or the outcome of an action. Furthermore,

mathematics is very useful in the software process because it provides

a smooth transition between software engineering activities. System

designs, functional specifications and the program code (which is a

mathematical notation) can all be expressed in mathematics.The

support for abstraction is a major property which mathematics

possesses and it is an excellent medium for modeling. Since

mathematics is an accurate method, there is very little room for

ambiguity. Hence, specifications can be validated for contradictions

and incompleteness using mathematics, thereby removing any trace of

vagueness. Also, mathematics can be used to represent various levels

of abstraction in a system specification in an organized way

(Pressman, 2001).

When mathematics is used in software development, it offers a high

level of validation. Its proofs can be used to show that a design

matches a specification and a given program code properly reflects the

design. The use of mathematics for validation of software in the early

stages of development is much better than having all the checks at the

testing phase.

 A variety of advantages have been attributed to the use of formal

software specifications. These advantages include enhanced insight

into the understanding of specifications (Sommerville, 1992), (Wing,

1990) and (Zave, 1982) , help in verification of the specifications and

90

Risk management in a stock tracker

their programming implementations (Hall, 1990), (Jones, 1990) and

possible assistance in moving from requirements specification to their

programming implementation (Fraser et al., 1991).

RESEARCH METHODOLOGY

 This research makes use of a software engineering approach known

as formal method, the aim of which is to reduce risks in the course of

developing the system. A stock tracking software which aids users to

compute the return on their investment is modeled using entity-

relationship diagrams and unified modeling language (UML).

The Java programming language which is object oriented is used in

the implementation of the stock tracker. Java provides the users with

an interactive and easy to use graphical user interface (GUI).

 A stock is a store of goods available for sale. It is the total value of

money, equipment, or buildings of a business or company. A stock is

the business capital. Stock differs from shares because they are not

issued in fixed amounts. A stock is made up of many shares, which

means that, a share is a fraction of a stock. Stock belongs to a

stockholder while shares belong to a shareholder. Shares can be

converted to stock and the nominal value of a stock is normally higher

than that of a share.

Requirements analysis

 The stock tracker program keeps track of the investments of users.

The program is required to store information about all stocks owned

by a user, including the amount owned and other information that the

user may want to record, like the date and price when purchased. The

program is also able to find out the current price of other stocks in the

portfolio. It is an interactive program which will request responses

from the user and also allow the user to examine information about

many stocks in a single session. The user must begin by invoking the

program.

Portfolio

Two options are given here.

a) createPortfolio

b) editPortfolio

create Portfolio

 The user is informed of the available stocks by clicking on

ListOfStocks. The user can also click on getQuotes to know the

current prices of the stocks. After this, the user can click on

SelectStock for a choice to be made. An empty portfolio is created

and it is the open portfolio. Users are allowed to define separate

portfolios, each containing a group of related investments. A portfolio

contains positions, each of which provides information about a

particular stock. The chosen stock is referred to as the current position

(curPosition). The curPosition is the open portfolio. New users fill

the portfolio form and the cscs form and save it.

editPortfolio

 This is utilized by old/existing users. If there is need to make

corrections or include some information to their portfolio/cscs forms

which have been saved already, the editPortfolio is used. The system

will request for the user‟s RefNum (reference number is unique to all

the user). When this is typed in, the program invokes a command to

display the form corresponding to the typed RefNum. The user can

edit this form and save it.

Selectstock

 This allows the user to select the various positions and portfolios he

wants to invest in. the selection is done based on the List of Stocks

provided.

Buystock

This keeps track of the shares bought by a user. A user may wish to

buy n shares and add to his current position. The user will click on

contractNote and fill it. After that, the number of shares, NUM for

the current position, is increased by n. NUM = NUM + n

Sellstock

 When a user wants to sell n of his shares, the system will ensure that

the number of shares n ≤ NUM. (where NUM is the number of shares

for the current position). The user will click on contractNote and fill

it. After that, the number of shares NUM for the current position is

decreased by n. NUM = NUM – n

Get Quotes

 Two options are given to the user here

a) getPrice

b) getPrices

get Price

When there is a position P in curPosition and the user wishes to know

the current price of particular stock, he clicks on the link to

www.cscsnigeria.com and he can view the stock price.

getPrices

When there is an open portfolio and the user wish to know the current

prices of all the positions in that portfolio, the user will click on the

link to www.cscsnigeria.com and can view the current prices of all

the various stocks. The user can also monitor how well the stocks are

doing through the cscsnigeria website.

DeletePortfolio

 The portfolio P to be deleted is put in the current position. (The

current position is the open portfolio). The system will not allow a

non-empty portfolio to be deleted. The individual positions within the

portfolio have to be emptied first, before a non-empty portfolio can be

deleted. When the user gives a command Delete P, P is removed

from the current position in the open Portfolio.

91

http://www.cscsnigeria.com/
http://www.cscsnigeria.com/

Risk management in a stock tracker

ReturnOnInvestment (ROI)

 It is necessary for a user to know how his investments are doing

after a while. This can be determined by computing the capital gain,

which is also called the Return on Investment (ROI). By this time, the

principal (that is the original amount of money a user invested) should

have appreciated or depreciated. We call this appreciated/depreciated

principal new Consideration. The user supplies the information and

the program computes the ROI automatically.

newConsideration = currentSharePrice * NUM (number of units

owned)

StatutoryCharge = 4% of newConsideration

Principal (Original money invested)

ReturnOnInvestment (ROI) = newConsideration – StatutoryCharge –

Principal

 Requirement specification

 The stock tracker is an interactive program.

NUM (the number of shares) must be a non – negative integer.

TICKER (these are the names used to refer to the various stocks

which are available for investment in the stock market. It refers to

how various stocks are called. In this program a List of ten different

portfolios containing 2 or 3 stocks has been chosen.

Applying mathematical notation for formal specification

Buystock process

Num (Number of shares to be bought)

n (Number of shares to be bought)

 Data Invariant

For new users,

 #Num = O

 Precondition

Num‟ = Num + n

 Post condition

 Num = O;

Num‟ = Num + n >Num‟ = n

Num‟ is the number of shares a user has at the end of the

transaction.

Sell stock process

Num: Number of shares owned

n : number of shares to be sold

 precondition

n < = Num

II The precondition states that the number of shares to be sold must be

less than or equal to the amount of shares a user owns.

 Post condition

Num‟ = Num – n

Num‟ is the number of shares at the end of the transaction.

II If the precondition is not met, the user will not be allowed to carry

out such a transaction. The user can either reduce the amount of n or

stop the selling process.

ROI process

CurrentSharesPrice, NUM, Principal

II The principal here is the original amount of money invested.

newConsideration = currentSharePrice * NUM

II The newConsideration is the appreciated/depreciated value of the

principal. Statutory Charge = 0.04 * new Consideration.

 PostCondition

ROI = newConsideration – statutory Charge – Principal

ROI > O

II If this condition is not met

The ROI is < = O, an alert is given and the user is advised to see a

stock broker because a negative ROI indicates that such an investment

is not doing well.

Delete Portfolio process

 Precondition

Portfolio = { }

II A non-empty portfolio cannot be deleted

 PostCondition

Portfolio‟ = Portfolio \ positions

II The individual positions within the portfolio have to be emptied

first. Portfolio = { } The Empty portfolio can now be deleted.

Precondition

Newconsidaration = currentshare price x Num

The newconsideration is the appreciated/depreciated value of the

principal. Statutory charge = 0-04x newconsideration

 Post condition

ROI = newconsideration – statutory charge – principal

ROI> 0

If this condition is not met, The ROI is< 0 an alert is given and

the user is advised to see a stock broker because a negative ROI

indicates that such an investment is not doing well.

Design

UML (Unified modeling language) tools were used for the

design of the stock tracker. Fig. 1 shows the use case diagram

illustrating both old and new users. A class diagram (Fig. 2) has

shows the various classes that were developed and the

relationships amongst various classes in the stock tracker. An

activity diagram (Fig. 3) was also used to illustrate the various

activity carried out by both old and new users

92 Eteng et al.

Risk management in a stock tracker

Fig.1.Use case diagram for the stock tracker

Create

portfolio

Get quotes

Select stock

Buy stock

Edit

portfolio

Sell stock

Delete

portfolio

Check return on

investment

Old user

New user

93

Eteng et al.

 1 gets 1..*

 Is A

 1 fills 1

 1

 1

Fig. 2. Class diagram for the stock tracker

User

- name: String
- phone: Char (13)

- address: String

+ get Name(): String
+ get Phone():Char (13)
+ get Address (): String

+ Set Name (String)
+ Set Phone [Char(13)]
+ Set Address (String)

Quotes

- Name of share: String
- Current Price: Float
- Date: Date + getName of share: String
+ getCurrent Price: float

+ getDate: Date
+ setName of share (string)
+ setCurrent Price (float)

+ setDate (Date)

Portfolio Form

- RefNum:Char(5)
- MemberName: string
- MemberCode: Char (6)

+ EditPortfolio (): void

+ deletePorfolio (): void
+ getRefNum:Char(5)
+ getMemberName: string

+ getMemberCode: Char (6)
+ setRefNum:Char(5)
+ setMemberName (string)

+ setMemberCode: Char (6)

New User

Old User

- name of folio: string
- RefNum: Char(5)
- Portfoliotype: string

+ getName of folio(): string
+ getRef of Num (): Char (5)
+ getPortfolio Type (): string

+ setName of folio (string)
+ setRefNum:Char(5)
+ setMemberName (string)

+ getPortfolio Type (): string

Stock

- Name OfFolio: string
- Price: float

+getPrice (): float

+getPortfolio (): Char
+setPrice (float)
+setPotfolio (Char)

Return on Investment

- Principal: float
- new consideration: float

- statutoryCharge: float

+ getPrincipal: float

+ getnewConsideration (): float
+ getStatutoryCharge (): float
+ setPrincipal (float)

+ setnewConsideration (float)

+ setStatutory(Charge (float)

Contract Note

- Transferor: string
- CurrentStock Price: float

- Num of units: int

 + getTransferor (): string

+ getCurrent stock price (): float
+ getNum of Units (): int
+ SetTransferor (string)

+ SetCurrent stock price (float)
+ setNum of Units (int)

1
 s

e
le

c
ts

 1
..*

1..* buys

1
 c

h
e
c
k
s
 1

..*

fiu
s
 0

..*

94

Risk management in a stock tracker

Fig. 3. Activity diagram for the stock tracker

(new user) Create

portfolio

(old user) Edit

portfolio

(new)

(old)

Get quotes Select stock

Buy stock

next user

Check return on
investment

Delete portfolio

Sell stock

95

Risk management in a stock tracker

IMPLEMENTATION

 The stock Tracker which was modeled in the previous chapter is

implemented here using the Java programming language which is an

object oriented language. Java provides the users with an interactive

and easy-to-use Graphical User Interface (GUI).

In the course of program development, various Java classes were

developed for each of the functions, a user interface was designed,

and error messages were included to accommodate invalid user

entries. These are shown in Figs. 4-8.

 Implementation and testing

 The codes for the java classes of the stock tracker and the codes for

the implementation were not included in this papar for want of space.

Fig. 4.An example of the stock tracker interface for users

Fig. 5.The screen showing full inputs by a user
From the screen above, the user has typed in all the required data in
the correct manner.

Fig. 6. The computation of the return on investment

the user‟s return on investment has been computed. The above result
shows that the user‟s investment is actually doing well.

Fig. 7. A screen showing a negative Return on Investment

This screen shows a user with a negative return on investment. The
user‟s investment is not doing well and the system has alerted the user
to visit the stock broker who would advice on what to do.

Fig. 8. A screen showing an error message due to invalid data entry

96

Risk management in a stock tracker

This user did not enter data in all the required fields. The “principal”

field is empty so the system has prompted the user to do this.

SUMMARY AND CONCLUSION

 a stock tracker which enables users to keep track of their

investments was modeled. The formal method was applied to the

specifications of some aspects of the Tracker and this detected and

reduced some of the risks that could have resulted in problems in the

course of developing the program.

 The stock tracker provides facility for users to compute their return

on investment based on the current prices of such investments. This

feature of the stock tracker makes it quite unique and helps users to

avoid losses which could be prevented.

 Risk management should be integrated into decision-making just as

critical factors like time; money and labour have already been

integrated. It should be taken seriously and given an appropriate

amount of effort and formality. The formalizing of risk management

practices is a goal that can be achieved. The achievement of this goal

can be enhanced by promoting a "risk management culture".

REFERENCES

Fraser, M.D., Kumar, K., and Vaishnavi, V. K. (1991). Informal and
 formal requirements specification languages: bridging the
 gap. IEEE Trans. Softw. Eng. 17(5) :454-466.

Hall, A. (1990). Seven myths of formal methods. IEEE Softw. 7(5)

 :11-19.

Jones, C. B. (1990). Systematic software development using VDM.
 2ND edition. Prentice Hall, Englewood Cliffs, New Jersey

Pressman R. S. (2001). Software engineering: a practitioner’s
 approach. Mc Graw Hill, New York.

Sommerville, I. (1992). Software engineering. 4th edition. Addison –
 Wesley, Reading, Mass.

Wiegers, K.E. (2003). Software requirement 2nd edition, Microsoft
 Press.

Wing, J.M. (1990).A Specifier‟s introduction to formal

 methods. (IEEE Comput. 23(9) :8 – 24.

Zave, P.(1982) An operational approach to requirements specification
 for embedded systems. IEEE Trans. Softw Eng. 18(3): 250 -
 269.

97

